
©2024 Databricks Inc. — All rights reserved 1

Seamless Flow: 
Evolving from 
Batch to 
Streaming Data 
Flows using DLT

Scott Gordon, Lead Data Engineer at 84.51˚ 
Alli Hanlon, Data Engineer at 84.51˚ 



©2024 Databricks Inc. — All rights reserved 2

Introductions 

Scott Gordon
Lead Data Engineer at 84.51˚

Alli Hanlon
Data Engineer at 84.51˚



©2024 Databricks Inc. — All rights reserved 3

Agenda

About 84.51˚ 

Migrating from On-prem Airflow to Azure Databricks DLT

Seamless evolution from batch to streaming with DLT



©2024 Databricks Inc. — All rights reserved 4

About 84.51˚

“We are a retail data science, insights and media company. 
We help The Kroger Co., consumer packaged goods companies, 
agencies, publishers and affiliates create more personalized 
and valuable experiences for shoppers across the path to 
purchase.

Powered by cutting-edge science, we utilize first-party retail data 
from over 62 million U.S. households sourced by the Kroger Plus 
loyalty program to fuel a more customer-centric journey using 
84.51° Insights, 84.51° Loyalty Marketing and our retail media 
advertising solution, Kroger Precision Marketing.”



©2024 Databricks Inc. — All rights reserved 5

Feature: Once Flow
Sets apply_changes() to run only one time on a static source



©2024 Databricks Inc. — All rights reserved 6

Use case: Once Flow
Migrate legacy data flow from on-prem Hadoop to Azure Databricks

utilizing apply_changes() and Once Flow functionality



©2024 Databricks Inc. — All rights reserved 7

Online Orders



©2024 Databricks Inc. — All rights reserved 8

Sample Data

id status shoppingContext createdTime lastUpdateTime customerId orderType lineItems

123 complete {"chain": "KROGER",
"userDevice": ”WEB"}

2023-03-28 
T16:44:09Z

2024-05-
14T03:12:64 0242 pickup …

223 complete {"chain": "KROGER",
"userDevice": ”IOS"}

2023-03-28 
T16:44:09Z

2024-05-
15T05:19:32 0244 delivery …

Demo data from online store pickup and delivery orders



©2024 Databricks Inc. — All rights reserved 9

Legacy On-Prem Hadoop Solution



©2024 Databricks Inc. — All rights reserved 10

DLT Solution



©2024 Databricks Inc. — All rights reserved 11

DLT Solution – Pipeline



©2024 Databricks Inc. — All rights reserved

Code snippet of apply_changes

dlt.apply_changes (
flow_name = "online_order_completed_flow",
target = “online_order_completed",
source = ”online_order_view",
keys = ["id"],
# Sequence by timestamp to get most updated order for a given id
sequence_by = (col('lastUpdateTimestamp’)),
# Change data capture type
stored_as_scd_type = "1"

)

DLT Solution – Code

12

PYTHON



©2024 Databricks Inc. — All rights reserved 13

DLT Solution – Example

id status shoppingContext createdTime lastUpdateTime customerId orderType lineItems

123 complete {"chain": "KROGER",
"userDevice": ”IOS"}

2023-03-28 
T16:44:09Z

2024-05-17 
T05:19:32 0244 delivery …

123 complete {"chain": "KROGER",
"userDevice": ”IOS"}

2023-03-28 
T16:44:09Z

2024-05-15 
T05:19:32 0244 delivery …

The apply_changes() block would only keep the first record in the final table



©2024 Databricks Inc. — All rights reserved 14

DLT Solution – Example

id status shoppingContext createdTime lastUpdateTime customerId orderType lineItems

223 complete {"chain": "KROGER",
"userDevice": ”IOS"}

2023-03-28 
T16:44:09Z

2024-05-
15T05:19:32 0244 delivery …

223 complete {"chain": "KROGER",
"userDevice": ”IOS"}

2023-03-28 
T16:44:09Z

2024-05-
15T05:19:32 0244 delivery …

The apply_changes() block would only keep one copy of this record.



©2024 Databricks Inc. — All rights reserved

Code snippet of apply_changes with once option

dlt.apply_changes (
flow_name = "online_order_legacy_completed_flow",
# Once option is added and set to “true”
once = True,
target = “online_order_completed",
source = ”legacy_view",
keys = ["id"],
# Sequence by timestamp to get most updated order for a given id
sequence_by = (col('lastUpdateTimestamp’)),
# Change data capture type
stored_as_scd_type = "1"

)

DLT Solution – Code

15

PYTHON



©2024 Databricks Inc. — All rights reserved 16

Benefits

Migrating to Azure Databricks and DLT

• Simplified data flow, managed by one team

• Code is declarative, making it easy to read and maintain

Use of apply_changes() and Once Flow

• Ability to read from both an ongoing flow and a static source, with no overlap 
in the final table

• Ability to set the static source to only run once



©2024 Databricks Inc. — All rights reserved 17

Feature: append_flow()
Allows you to write to a target table

from multiple sources



©2024 Databricks Inc. — All rights reserved 18

Use case: append_flow()
Seamlessly migrate an existing DLT data flow 

from batch files to Kafka streaming 
utilizing append_flow() functionality



©2024 Databricks Inc. — All rights reserved 19

Digital Shopping Behavior



©2024 Databricks Inc. — All rights reserved 20

V1 – Data Flow



©2024 Databricks Inc. — All rights reserved 21

V1 – DLT Pipeline



©2024 Databricks Inc. — All rights reserved

PYTHON

Code snippet:  Autoloader flow

@dlt.table(name='actions')
def actions():

return (
spark.readStream
.format('cloudFiles')
.option('cloudFiles.format', 'json’)
.schema(static_schema)
.load('abfss://container@storage-account/path_to_json_files/')

)

V1 - DLT Pipeline Code

22



©2024 Databricks Inc. — All rights reserved 23

V2 – Data Flow



©2024 Databricks Inc. — All rights reserved

PYTHON

Code snippet:  Autoloader flow with Append Flow added

@dlt.table(name="actions")
def actions():

return (
spark.readStream
.format('cloudFiles’)
.where(col("event_date") < ”2024-04-01")

)
. . . . . . 
@dlt.append_flow(name = ”new_append_flow", target = "actions")
def new_append_flow():

return (
spark.readStream.format('kafka').options(config).load()

.where(col("event_date") >= ”2024-04-01") 
)

V2 - DLT Pipeline Code

24



©2024 Databricks Inc. — All rights reserved 25

V1–V2-V3 Seamless Deployment

<= Week 10 Week 11 Week 12 Week 13 Week 14

V1 deploy V2 2024-04-01 V2 deploy V3



©2024 Databricks Inc. — All rights reserved 26

V3 – Data Flow



©2024 Databricks Inc. — All rights reserved

PYTHON

Code snippet:  Autoloader removed leaving Append Flow only

dlt.create_streaming_table("actions")

. . . . . . 

@dlt.append_flow(name = ”my_append_flow", target = "actions")
def clickstream_raw_kafka():

return (
spark.readStream.format('kafka').options(**config).load()

.where(col("event_date") >= ”2024-04-01")
)

V3 - DLT Pipeline Code

27



©2024 Databricks Inc. — All rights reserved 28

Benefits

• End-to-end ownership of data flow

• Reduced latency from HOURS to MINUTES

• Migrated from batch files to streaming
• No downtime 

• Minimal code changes



©2024 Databricks Inc. — All rights reserved

• Similar to “MERGE INTO”

• Can insert, update, or delete

• Change data capture (SCD 1 and 2)

• Schemas must match

• Once flow option built-in

Apply Changes Append Flow

29

• Similar to “UNION ALL”

• Data flows / appends in its entirety

• No change data capture

• Schemas can be merged

• No once flow option built-in

How did we choose?



©2024 Databricks Inc. — All rights reserved

SciCLOps: Databricks 
Quick Start for Machine 
Learning, Powered by DABs

Unlocking Data Value: 
84.51˚’s Journey with 
Databricks Unity Catalog

Databricks Asset Bundles: 
A Unifying Tool for 
Deployment on Databricks

30

Our Other Talks!
Check out more from 84.51  ̊



©2024 Databricks Inc. — All rights reserved 31

QUESTIONS?


	Seamless Flow: Evolving from Batch to Streaming Data Flows using DLT
	Introductions 
	Agenda
	About 84.51˚
	Feature: Once Flow
	Use case: Once Flow
	Online Orders
	Sample Data
	Legacy On-Prem Hadoop Solution
	DLT Solution
	DLT Solution – Pipeline
	DLT Solution – Code
	DLT Solution – Example
	DLT Solution – Example
	DLT Solution – Code
	Benefits
	Feature: append_flow()
	Use case: append_flow()
	Digital Shopping Behavior
	V1 – Data Flow
	V1 – DLT Pipeline
	V1 - DLT Pipeline Code
	V2 – Data Flow
	V2 - DLT Pipeline Code
	V1–V2-V3 Seamless Deployment
	V3 – Data Flow
	V3 - DLT Pipeline Code
	Benefits
	How did we choose?
	Our Other Talks!
	QUESTIONS?

